Minggu, 06 September 2020

SOAL PENYELESAIANNYA MENGGUNAKAN MATRIKS

 

SOAL PENYELESAIANNYA MENGGUNAKAN MATRIKS

SOAL PENYELESAIANNYA MENGGUNAKAN MATRIKS

NAMA : RYAN ALFARIDZI

KELAS : XI IPS 2

ABSEN : 31


Determinan Matriks Ordo 2 x 2

Contoh matriks dengan ordo 2 x 2  adalah seperti ini:

 

Nilai determinan A di simbolkan dengan | A | , cara menghitung nilai determinan A dapat di lihat seperti cara yang di bawah ini :

Rumus untuk mencari determinan 2 x 2 (2)
Rumus untuk mencari determinan 2 x 2

Contoh Soal :
1. Tentukan determian matriks di bawah ini ?

contoh cara mencari determinan matriks ordo 2x2

 Penyelesaian:
  kita bisa menggunakan rumus untuk bisa menyelesaikannya.

                Det (A) = |A| = ad – bc
                |A| = (7 x 3) – (2 x 8)
                |A| = 21 – 16
                |A| = 5

Determinan Matriks Ordo 3 x 3

Contoh matriks dengan ordo 3 x 3  adalah seperti ini:

contoh cara mencari determinan matriks ordo 3x3

 Untuk menghitung determinan matriks berordo 3×3, kamu bisa menggunakan aturan               Sarrus. Gambar di bawah ini akan menunjukkan caranya dengan lebih jelas.

determinan matriks ordo 3x3

Sumber Gambar: idschool.net

Contoh Soal :

1. Hitunglah berapa nilai determinan dari matriks ordo 3 x 3 berikut ini :

pembahasan:

det( A ) = ( 1 . 1 . 2 ) + ( 2 . 4 . 3 ) + ( 3 . 2 . 1 ) – ( 3 . 1 . 3 ) – ( 1 . 4 . 1 ) – ( 2 . 2 . 2 )
               =      2         +     24          +       6          –       9         –      4           –       8
               = 11


Kofaktor Matriks ber-ordo 2 x 2 dan 3 x 3


        Contoh:
    

 
 Contoh Soal :

1.  Tentukan kofaktor dari minor matriks berikut ini :                                     

    pembahasan:  

 KEab = (-1)a+b x NEab
KE11 = (-1)1+1 x NE11 = (-1)2 x (-3) = 1 x -3 = -3
KE12 = (-1)1+2 x NE12 = (-1)3 x (-6) = -1 x (-6) = 6
KE13 = (-1)1+3 x NE12 = (-1)4 x (-3) = 1 x (-3) = -3
KE21 = (-1)2+1 x NE21 = (-1)3 x (-6) = -1 x (-6) = 6
KE22 = (-1)2+2 x NE22 = (-1)4 x (-12) = 1 x (-12) = -12
KE23 = (-1)2+3 x NE23 = (-1)5 x (-6) = -1 x (-6) = 6
KE31 = (-1)3+1 x NE31 = (-1)4 x (-3) = 1 x (-3) = -3
KE32 = (-1)3+2 x NE32 = (-1)5 x (-6) = -1 x (-6) = 6
KE33 = (-1)3+3 x NE33 = (-1)6 x (-3) = 1 x (-3) = -3

Maka kofaktornya adalah :

Invers Matriks ber-ordo 2 x 2

Sifat-sifat dari matriks terbalik adalah sebagai berikut :

  • AA‾¹ = A‾¹A = I
  • AB‾¹ = B‾¹A‾¹
  • (A‾¹)‾¹ = A
  • Jika XA = B, maka X = BA-¹
  • Jika AX = b, maka X = A-¹B

Secara umum, rumus invers matriks dapat ditulis sebagai berikut :

rumus invers matriks

Keterangan :

  • A‾¹ =  Invers Matriks (A)
  • det (A) = Determinan Matriks (A)
  • Adj (A) = Adjoin Matriks (A)

Contoh Soal :

1. Tentukanlah invers dari matriks berikut.

Pembahasan:

 

Catatan: elemen-elemen yang berada di lingkar biru merupakan diagonal utama matriks A yang ditukar posisinya, sedangkan elemen-elemen yang berada di lingkar oranye merupakan diagonal kedua matriks A yang dikalikan dengan minus satu (-1).

Invers Matriks ber-ordo 3 x 3

Secara umum, determinan terbalik dari matriks 3×3 lebih mudah untuk dihitung menggunakan metode Sarrus. Metodenya adalah sebagai berikut :

metode sarrus

Contoh Soal :

1. Tentukan invers matriks berikut dengan menggunakan adjoin!

adjoin matriks

Penyelesaian:

 

Oke, berdasarkan rumus di atas, kita membutuhkan determinan dan adjoin matriks A. Pertama, kita cari terlebih dahulu determinan matriks A menggunakan metode yang sudah dijelaskan sebelumnya. Bisa dengan cara aturan Sarrus ataupun metode minor-kofaktor. Misalnya, kita akan menggunakan metode Sarrus, sehingga:

Kemudian, kita tentukan adjoin matriks dengan mencari kofaktor matriks A tersebut.

Oleh karena itu,

adjoin matriks

Jadi,

adjoin matriks

Minggu, 30 Agustus 2020

MATRIK, MACAM-MACAM MATRIK DAN OPERASI MATRIK

MATRIK, MACAM-MACAM MATRIK DAN OPERASI MATRIK


Ryan Alfaridzi (31) XI IPS 2
  • Pengertian Matriks

Matriks merupakan susunan sekelompok bilangan didalam suatu jajaran yang berbentuk persegi panjang dan diatur berdasarkan baris dan kolom yang kemudian diletakkan antara 2 tanda kurung. Tanda kurung yang dipakai untuk mengapit susunan anggota matriks tersebut bisa berupa tanda kurung biasa atau kurung siku. Bilangan pada matriks disebut elemen atau unsur matriks.

Kumpulan elemen atau unsur yang tersusun secara horizontal disebut baris, sementara kumpulan elemen atau unsur yang tersusun secara vertikal disebut dengan kolom. Matriks yang memiliki m baris dan n kolom disebut dengan matriks m x n dan disebut sebagai matriks yang memiliki orde m x n. Selain itu, penulisan matriks menggunakan huruf kapital dan tebal

  • Jenis - Jenis Matriks :

1. Transpos Matriks

Matriks transpos ialah matriks yang menukar baris menjadi kolom dan kolom menjadi baris. Matriks transpos biasa dilambangkan dengan t. Contohnya matriks A berikut :
Transpos Matriks
2. Matriks Simetri

Matriks simetri ialah suatu matriks dimana matriks transposnya memiliki unsur elemen yang sama. Contohnya sebagai berikut :
Matriks Simetri
3. Matriks Persegi

Matriks persegi ialah suatu matriks yang memiliki ordo sama. Contohnya matriks A ordo 2x2 dan B ordo 3x3 berikut :
Matriks Persegi
4. Matriks Segitiga Atas dan Bawah

Matriks segitiga atas ialah matriks dimana unsur atau elemen dibawah diagonal utamanya bernilai 0. Contohnya sebagai berikut :
Matriks Segitiga Atas dan Bawah
Sedangkan matriks segitiga bawah merupakan kebalikan dari matrik atas dimana, diatas diagonal utamanya selalu bernilai 0. Contohnya sebagai berikut :
Matriks Segitiga Atas dan Bawah 2
5. Matriks Diagonal

Matriks diagonal ialah matriks dimana unsur selain diagonal utamanya bernilai 0. Contohnya sebagai berikut :
Matriks Diagonal
6. Matriks Identitas

Matriks identitas ialah matriks yang diagonal utamanya selalu bernilai 1. Contohnya sebagai berikut :
Matriks Identitas
  • Operasi Pada Matriks :

1. Penjumlahan Matriks

Syarat pada penjumlahan matriks ialah harus memiliki ordo yang sama, dan menambahkan pada posisi atau letak yang sama. Contohnya sebagai berikut :
Penjumlahan Matriks
2. Pengurangan Matriks

Syarat pada pengurangan matriks juga sama dengan penjumlahan. Misal matriks C adalah pengurangan matriks A dan B, perlu kita ketahui bahwa matriks pengurangan ialah sama dengan penambahan Matriks A dengan perkalian skalar -1 dengan matriks B.

"C=A-B" sama dengan "C = A+ [-1] B"

Contoh pengurangan matriks sebagai berikut :
Pengurangan Matriks
3. Perkalian matriks dengan skalar

Pada perkalian matriks dengan skalar caranya yaitu mengalikan nilai skalar dengan semua letak matriks. Contohnya sebagai berikut :
Perkalian matriks dengan skalar
4. Perkalian matriks dengan matriks

Syarat pada perkalian matriks ialah jumlah kolom pada matriks pertama sama dengan jumlah baris pada matriks kedua. Contohnya sebagai berikut perkalian A2x3 dan 3x3 :

Perkalian matriks dengan matriks 2



  • CONTOH SOAL

 

Contoh Soal 1

Jika diketahui persamaan metrik !

A. 4
B. 5
C. 7
D. 29
E. 31

Pembahasannya :

Karena kedua matriks sama, maka elemen-elemen yang seletak akan sama pula, sehingga berlaku:

2x + 1 = 3
2x = 2
x = 1
y + 12 = 15
y = 3
x + y = 1 + 3 = 4

Jawabannya : A

Contoh Soal 2

Contoh Soal 3

Contoh Soal 4

Contoh Soal 5

Contoh Soal 6

Contoh Soal 7

Jika determinan nilai matriks A adalah 4 kali determinan nilai matriks B, maka nilai x adalah…

 A. 4/3 
B. 8/3 
C. 10/4 
D. 5/3 
E. 16/7

Pembahasannya:
det A = 4 det B 
x (16 x ) – (-16) = 4 (108 – (-152)) 
x (4 2x ) + 16 = 4 (260) 
3x = 4 (260) – 16 
3x = 4 (260) – 4 (4) 
3x = 4 (260 – 4) 
3x = 4 (256) 
3x = 4. 4 4
3x = 4 5
3x = 5 
x = 5/3

Jawabannya : D

Contoh Soal 8

Contoh Soal 9

Contoh Soal 10

A.60 derajat
B.40 derajat
C.30 derajat
D.10 derajat
E.70 derajat

Pembahasannya :

Jumlah dan selisih kedua vektor masing-masing adalah:

Jawabannya : A

.




SIFAT-SIFAT LIMIT DAN CONTOH SOALNYA SERTA SOAL KONTEKSTUAL YANG BERHUBUNGAN DENGAN LIMIT

SIFAT-SIFAT LIMIT DAN CONTOH SOALNYA SERTA SOAL KONTEKSTUAL YANG BERHUBUNGAN DENGAN LIMIT Assalamualaikum wr.wb Nama : Ryan Alfaridzi (32) K...