Senin, 28 September 2020

TRANSFORMASI TRANSLASI, REFLEKSI, ROTASI, DILATASI, DENGAN MATRIKS

 

TRANSFORMASI TRANSLASI, REFLEKSI, ROTASI, DILATASI, DENGAN MATRIKS

RYAN ALFARIDZI (31) XI IPS 2

Translasi
Translasi atau pergeseran adalah suatu transformasi yang memindahkan tiap titik pada bidang dengan jarak dan arah tertentuk.

1. Bayangan garis y = 2x + 2 yang dicerminkan terhadap garis y= x adalah. . .

soal transformasi geometri no 1

Jawaban : C

Pembahasan : 

soal transformasi geometri dan jawaban no 1

2. Persamaan bayangan kurva y = x² – 2x – 3 oleh rotasi [0, 180°], kemudian dilanjutkan oleh pencerminan terhadap garis y = -x adalah …. 

A. y = x² – 2x – 3 

B. y = x² – 2x + 3

C. y = x² + 2x + 3

D. x = y² – 2y – 3

E. x = y² + 2y + 3

Jawaban : D

Pembahasan : 

soal transformasi geometri dan jawaban no 2

Rotasi sudut-sudut yang lain dapat dihitung sendiri menggunakan kaidah trigonometri.

pencerminan terhadap garis y = -x

soal transformasi geometri dan jawaban no 2-1

3. Hasil translasi titik P1(3, –2) oleh T1 dilanjutkan dengan T2,

    \[ T_{2} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \]

menghasilkan titik P2 (8, 7). Komponen translasi dari T1 yang sesuai adalah ….

    \[ \textrm{A.} \; \; \; \begin{pmatrix} 8 \\ 3 \end{pmatrix} \]

    \[ \textrm{B.} \; \; \; \begin{pmatrix} 3 \\ 8 \end{pmatrix} \]

    \[ \textrm{C.} \; \; \; \begin{pmatrix} 3 \\ 5 \end{pmatrix} \]

    \[ \textrm{D.} \; \; \; \begin{pmatrix} 1 \\ 8 \end{pmatrix} \]

    \[ \textrm{E.} \; \; \; \begin{pmatrix} 1 \\ 5 \end{pmatrix} \]

Pembahasan:

Misalkan:

    \[ T_{1} = \begin{pmatrix} a \\ b \end{pmatrix} \]

Maka,

    \[ T_{2} \bullet T_{1} = \begin{pmatrix} a + 4 \\ b + 1 \end{pmatrix} \]

Perhatikan proses translasi berikut.

Contoh soal dan pembahasan translasi

Mencari nilai a:

3 + a + 2 = 8
a + 5 = 8
a = 8 – 5 = 3

Mencari nilai b:

-2 + b + 1 = 7
b – 1 = 7
b = 7 + 1 = 8

Jadi, nilai translasi dari T1 adalah

    \[ T_{1} = \begin{pmatrix} 3 \\ 8 \end{pmatrix} \]

Jawaban: B

 

4. Persamaan garis 3x – y – 11 = 0 karena refleksi terhadap garis y = x, dilanjutkan oleh transformasi yang bersesuaian dengan matriks A,

    \[ \begin{pmatrix} -3 & 2 \\ -1 & 1 \end{pmatrix} \]

adalah ….
A. –2x – 7y –11 = 0
B. 2x + 7y – 11 = 0
C. –2x – 7y + 11 = 0
D. 2y – 7x + 11 = 0
E. 2x – 7y + 11 = 0

Pembahasan:

Pertama, cari hasil bayangan dari pencerminan terhadap garis y = x.

Matriks pencerminan terhadap garis y = x adalah:

Contoh soal dan pembahasan refleksi

Berdasarkan rumus di atas, dapat diperoleh kesimpulan bahwa x’ = y dan y’ = x. Substitusikan nilai tersebut pada persamaan 3x – y – 11 = 0 sehingga diperoleh persamaan berikut.

3x – y – 11 = 0
3y’ – x’ – 11 = 0
– x’ + 3y’ – 11 = 0

Kedua, langkah selanjutnya adalah transformasi yang bersesuaian dengan matriks A,

    \[ \begin{pmatrix} -3 & 2 \\ -1 & 1 \end{pmatrix} \]

Perhatikan langkah – langkahnya seperti berikut,

    \[ \begin{pmatrix} x'' \\ y'' \end{pmatrix} = \begin{pmatrix} -3 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -3x' + 2y' \\ -x' + y' \end{pmatrix} \]

Sehingga, diperoleh dua persamaan berikut.

–3x’ + 2y’ = x’’
– x’ + y’ = y’’

Berikutnya, akan dicari persamaan yang senilai dengan x’ dan y’:

Mencari nilai x’:

Metode eliminasi variabel

Mencari nilai y’:

Metode eliminasi variabel

Subtitusi hasil x’ dan y’ di atas pada persamaan  – x’ + 3y’– 11 = 0:

    \[ -x' + 3y' - 11 = 0 \]

    \[ -\left( 2y'' - x'' \right) + 3\left( 3y'' - x'' \right) - 11 = 0 \]

    \[ -2y'' + x'' + 9y'' - 3x'' - 11 = 0 \]

    \[ -2x'' + 7y'' - 11 = 0 \]

    \[ 2x'' - 7y'' + 11 = 0 \]

Jadi, hasil akhir transformasi dari persamaan 3x – y – 11 = 0 adalah 2x – 7y + 11 = 0.

Jawaban: E

 

5. Hasil pencerminan garis x – 2y – 2 = 0 terhadap sumbu y dan kemudian diputar dengan R[ O(0,0), 90o ] adalah ….

A. 2x – y – 4 = 0
B. x – 2y – 4 = 0
C. x – 2y – 2 = 0
D. 2x – y + 2 = 0
E. 2x – y – 4 = 0 \]

Pembahasan:

Hasil transformasi pencerminan terhadap sumbu y adalah:

Contoh Soal dan Pembahasan Transformasi Geometri Refleksi

Sehingga diperoleh x’ = – x dan y’ = y, selanjutnya substitusikan kedua nilai yang diperoleh pada persamaan x – 2y – 2 = 0.

x – 2y – 2 = 0
– x’ – 2y’ – 2 = 0

Transformasi selanjutnya adalah rotasi sebesar 90o yang berpusat di O(0, 0):

    \[ \begin{pmatrix} x'' \\ y'' \end{pmatrix} = \begin{pmatrix} cos \; 90^{o} & -sin \; 90^{o} \\ sin \; 90^{o} & cos \; 90^{o} \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} \]

    \[ \begin{pmatrix} x'' \\ y'' \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} \]

    \[ \begin{pmatrix} x'' \\ y'' \end{pmatrix} = \begin{pmatrix} -y' \\ x' \end{pmatrix} \]

Substitusi nilai x’ = y’’ dan y’ = – x’’ pada persamaan –x’ – 2y’ – 2 = 0, akan diperoleh

– x’ – 2y’ – 2 = 0
– y’’ – 2(–x’’) – 2 = 0
– y’’ + 2x’’ – 2 = 0
2x’’ – y’’ + 2 = 0

Jadi, hasil pencerminan garis x – 2y – 2 = 0 terhadap sumbu y dan kemudian diputar dengan R[ O(0,0), 90o ] adalah 2x – y + 2 = 0.

Jawaban: D


6. Dilatasi yang berpusat di titik (3, 1) dengan faktor skala 3, memetakan titik (5, b) ke titik (a, 10). Maka nilai a – b adalah ….
A. 15
B. 11
C. 5
D. 4
E. 2

Pembahasan:

Dilatasi dengan pusat (3, 1) dengan faktor skala 3 akan menghasilkan matriks transformasi berikut.

    \[ \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 5 - 3 \\ b- 1 \end{pmatrix} + \begin{pmatrix} 3 \\ 1 \end{pmatrix}\]

    \[ \begin{pmatrix} a \\ 10 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ b- 1 \end{pmatrix} + \begin{pmatrix} 3 \\ 1 \end{pmatrix}\]

    \[ \begin{pmatrix} a \\ 10 \end{pmatrix} = \begin{pmatrix} 6 \\ 3b - 3 \end{pmatrix} + \begin{pmatrix} 3 \\ 1 \end{pmatrix}\]

    \[ \begin{pmatrix} a \\ 10 \end{pmatrix} = \begin{pmatrix} 9 \\ 3b - 2 \end{pmatrix} \]

Sehingga dapat diperoleh nilai a dan b:

  • a = 9
  • 3b – 2 = 10
    3b = 12
    b = 12 : 3 = 4

Jadi, nilai a – b = 9 – 4 = 5

Jawaban: C

7. T1 adalah transformasi yang bersesuaian dengan matriks soal transformasi geometri no 8 dan T2 adalah transformasi yang bersesuaian dengan matriks soal transformasi geometri no 8-1Bayangan A (m,n) oleh transformasi T1 o T2 adalah (-9,7). Nilai m+n sama dengan…

A. 4

B. 5

C. 6

D. 7

E. 8 

Jawaban : B

Pembahasan : 

soal transformasi geometri dan jawaban no 8

8. Bayangan ∆ABC dengan A(2,1), B(6,1), C(5,3) karena refleksi terhadap sumbu y dilanjutkan rotasi (0,90°) adalah…

A. A” (-1,-2), B” (1,6) dan C” (-3,-5)

B. A” (-1,-2), B” (1,-6) dan C” (-3,-5)

C. A” (1,-2), B” (-1,6) dan C” (-3,5)

D. A” (-1,-2), B” (-1,-6) dan C” (-3,-5)

E. A” (-1,2), B” (-1,-6) dan C” (-3,-5)

Jawaban : D

Pembahasan : 

soal transformasi geometri dan jawaban no 9

9. Persamaan peta kurva y = x² – 3x + 2 karena pencerminan terhadap sumbu x dilanjutkan dilatasai dengan pusat O dan factor skala 3 adalah…

A. 3y + x² – 9x + 18 = 0

B. 3y – x² + 9x – 18 = 0

C. 3y – x² + 9x + 18 = 0

D. 3y + x² + 9x + 18 = 0

E. y + x² + 9x – 18 = 0 

Jawaban : A

Pembahasan : 

pencerminan terhadap sumbu x:

P ( x , y ) → P ‘ ( x , – y )

Dilatasi terhadap titik pusat O(0,0) dengan factor skala 3 :

[O, k] : P(x,y) → P'(kx, ky)

[O,3k] : P(x,y) → P'(3x, 3y)

pencerminan terhadap sumbu x dilanjutkan dilatasai
dengan pusat O dan factor skala 3 :

P(x,y) → P ‘(x, -y) → P ”(3x, -3y)

soal transformasi geometri dan jawaban no 10 

Tidak ada komentar:

Posting Komentar

SIFAT-SIFAT LIMIT DAN CONTOH SOALNYA SERTA SOAL KONTEKSTUAL YANG BERHUBUNGAN DENGAN LIMIT

SIFAT-SIFAT LIMIT DAN CONTOH SOALNYA SERTA SOAL KONTEKSTUAL YANG BERHUBUNGAN DENGAN LIMIT Assalamualaikum wr.wb Nama : Ryan Alfaridzi (32) K...